LOGIKA FUZZY METODE MAMDANI DALAM SISTEM KEPUTUSAN FUZZY PRODUKSI MENGGUNAKAN MATLAB

Mia Kastina, Marzuki Silalahi

Sari


Abstract

The uncertainty of production system can be caused by stock uncertainty. The uncertainty problems can be solved by fuzzy logic using fuzzy inference system Mamdani method. The algorithm of fuzzy inference system is as follows: analysis of input-output, determining the variables of input-output, fuzzyfication for determining of the fuzzy sets, determining of rules, and  defuzzyfication. The algorithm is implemented in Matlab7. The amount of daily production is determined by centroid method. For Wendnesday, by entering the variable demand of 4,000 packaging and packaging inventory number is 300, then resulted the amount of production of 4,200 packaging. The certainty of  production system can be obtained from uncertainty amounts of demand and stock by using Fuzzy Logic Mamdani Method.

Keywords: fuzzy logic, fuzzy inference system (FIS), Matlab7, Mamdani method, system uncertainty.

 

Abstrak

Permasalahan yang sering timbul di sistem perdagangan adalah ketidakpastian persediaan yang berakibat pada ketidakpastian sistem produksi. Logika fuzzy merupakan logika pemecahan ketidakpastian sistem melalui sistem keputusan fuzzy. Sistem keputusan fuzzy yang digunakan adalah mengikuti algortima metode Mamdani. Adapun algoritma yang dilakukan adalah pembentukan sistem fuzzy yaitu analisa input maupun output, penentuan variabel input dan output, penentuan fungsi keanggotaan masing-masing himpunan fuzzy-nya, penetapan aturan-aturan berdasarkan pengalaman atau pengetahuan seorang pakar di bidangnya dan implementasi sistem fuzzy. Untuk menentukan jumlah produksi pada setiap harinya, dilakukan pengolahan data dengan menggunakan bantuan software Matlab 7.0 toolbox fuzzy, dimana pada penegasan (defuzzyfikasi) dengan menggunakan metode centroid. Dengan memasukkan variabel permintaan sebesar 4.000 kemasan dan jumlah persediaan sebesar 300 kemasan, maka hasil yang didapatkan untuk jumlah produksi pada rabu sebesar 4.200 kemasan. Dengan logika fuzzy metode Mamdani diperoleh bahwa ketidakpastian jumlah permintaan dan jumlah persediaan bisa diperoleh produksi yang pasti.

Kata kunci :  logika fuzzy, fuzzy inference system (FIS), Matlab 7, algoritma,  metode Mamdani


Teks Lengkap:

PDF

Referensi


Daftar Pustaka

I. N. Askerzade (Askerbeyli) & Mustafa Mahmud. (2011, February). DESIGN AND IMPLEMENTATION OF GROUP TRAFFIC CONTROL SYSTEM USING FUZZY LOGIC. IJRRAS 6 (2). http://www.arpapress.com/Volumes/Vol6Issue2/IJRRAS_6_2_11.pdf

Novarizadevi. (2012, Oktober). Fuzzy Logic menggunakan metode mamdani. http://sheunyil.blogspot.co.id/2012/10/fuzzy-logic-menggunakan-metode-mamdani.html

Vandna Kansal, Amrit Kaur. (2013, June). Comparison of Mamdani-type and Sugenotype FIS for Water Flow Rate Control in a Rawmill. International Journal of Scientific & Engineering Research, Volume 4, Issue 6. http://www.ijser.org/researchpaper/Comparison-of-Mamdani-type-and-Sugeno-type-FIS-for-Water-Flow-Rate-Control-in-a-Rawmill.pdf.

MathWorks.(2013).Fuzzy Logic Toolbox™ User’s Guide: The MathWorks, Inc

Chonghua Wang. (2015, January). A STUDY OF MEMBERSHIP FUNCTIONS ON MAMDANI-TYPE FUZZY INFERENCE SYSTEM FOR INDUSTRIAL DECISION-MAKING. Mechanical Engineering and Mechanics. Lehigh University.

http://preserve.lehigh.edu/cgi/viewcontent.cgi?article=2665&context=etd

Shweta Katke, Madhavi Pawar, Trupti Kadam, Sudhanshu Gonge. (2015).Combination of Neuro Fuzzy Techniques Give Better Performance over Individual Techniques of Soft Computing. International Journal of Computer Science and Information Technologies, Vol. 6 (1) . http://ijcsit.com/docs/Volume%206/vol6issue01/ijcsit20150601123.pdf

Aleksandar Rikalovic, Ilija Cosic. (2015). A Fuzzy Expert System for Industrial Location Factor Analysis, Acta Polytechnica Hungarica, Vol 2 No 2. Serbia.

Fahmizale .(2011, Februari). Logika Fuzzy.

https://fahmizaleeits.wordpress.com/tag/logika-fuzzy-adalah-suatu-proses/

Anonymous ekkiqwFk0r. (2015, Oktober). Praktikum 4 Fuzzy Matlab. https://www.scribd.com/doc/299158956/Praktikum-4-Fuzzy-Matlab




DOI: https://doi.org/10.47007/komp.v1i2.1871

Refbacks

  • Saat ini tidak ada refbacks.


VISITOR COUNTER:

gerEGGe

 

Web Analytics Made Easy - Statcounter View My Stats