Aroem Naroeni



Stem cell is very promising for regenerative medicine. Unfortunately, the sources of stem cells are limited. Umbilical cord, bonne marrow are now the most used as stem cell source. Many techniques are now being developed to isolate, propagate and differentiate stem cells. The development of induced-pluripotent stem cells that reprogram adult cells to stem cells are being developed as well. In this research we have developed stem cell culture for the propagation of stem cells by using feeder cells and conditioned medium. Stem cells were isolated from mice embryonic  13 days after copulation. We obtained bulks of stem cells surrounded with mouse fibroblast cells. Stem cells require this mouse fibroblast cells as a feeder and conditioned medium, Medium that have been added with supernatant of 3 days cell culture.

Keywords : stem cell, conditioned medium, induced-pluripotent stem cell



Sel punca sangat menjanjikan dalam bidang kedokteran regeneratif karena dapat menyembuhkan berbagai penyakit karena kerusakan jaringan. Meskipun begitu, sumber sel punca yang dapat digunakan untuk keperluan tersebut sangat terbatas. Sel darah pusat dan sumsum tulang belakang saat iniadalah merupakan sumber sel punca yang paling banyak digunakan. Beberapa macam teknik sedang dikembangkan untuk mengisolasi, propagasi dan differensiasi sel punca. Perkembangan induced-pluripotent stem cell (iPS) untuk propagasi sel punca juga sedang dikembangkan. Pada penelitian ini, kami mengembangkan kultur sel untuk propagasi sel punca dengan menggunakan sel feeders dan conditioned medium. Sel punca diisolasi dari embrio mencit 13 hari setelah kopulasi. Setelah dikultur dalam media tersebut maka diperoleh sekelompok sel punca yang dikelilingi oleh sel fibroblas. Sel punca dapat dikembangkan dan dipertahankan sifat kepuncaannya dengan menggunakan sel fibroblas sebagai sel feeder dan penambahan conditioned medium pada media kulturnya.


Kata kunci : sel punca, conditioned medium, induced-pluripotent stem cell

Teks Lengkap:



Daftar Pustaka

Avior, Y. G. Levy, M. Zimerman et al., (2015). Microbial-derivedlithocholic Acid and Vitamin Kdrive the Metabolic Maturationof Pluripotent Stem Cells-derived and Fetal Hepatocytes,Hepatology,62 (1) : 265–278.

Benavides OM, A. R. Brooks, S. K. Cho, J. Petsche Connell, R. Ruano, and J. G. Jacot. (2015). In Situ Vascularization of Injectable Fibrin/Poly (Ethylene Glycol) Hydrogels by Human Amniotic Fluid Derived Stem Cells,Journal of Biomedical Materials Research Part A, 103 (8): 2645–2653.

Brown SG, R. J. Harman, and L. L. Black, (2012). Adipose-derivedstem Cell Therapy for Severe Muscle Tears in Working German Shepherds: Two Case Reports,Stem Cell Discovery,2 (2) : 41–44.

Bruin, JE. N. Saber, N. Braun et al., (2015). Treating Diet-induced Diabetes and Obesity with Human Embryonic Stem Cell-derived Pancreatic Progenitor Cells and Antidiabetic Drugs,Stem Cell Reports,4 (4) : 605–620.

Carpentier, A. I. Nimgaonkar, V. Chu, Y. Xia, Z. Hu, and T. J. Liang, (2016). Hepatic Differentiation of Human Pluripotent Stem Cells in Miniaturized Format Suitable for High-throughput Screen,Stem Cell Research, 16 (3) : 640–650.

Chen L, F. Qin, M. Ge, Q. Shu, and J. Xu. (2014). Application of Adipose-derived Stem Cells in Heart Disease,Journal of Cardio-vascular Translational Research,7 (7) : 651–663.

Cheng,A. Z. Kapacee, J. Peng et al., (2014). Cartilage Repair using Human Embryonic Stem Cell-derived Chondroprogenitors,†Stem Cells Translational Medicine,3 (11) : 1287–1295.

Conner et al , (2001). Mouse Embryo Fibroblast (Mef) Feeder Cell Preparation,Chapter 23, Unit 23, 2.

Cronk, SM. M. R. Kelly-Goss, H. C. Ray et al., (2015). Adiposederivedstem Cells from Diabetic Mice Show Impaired Vascularstabilization in a Murine Model of Diabetic Retinopathy,†StemCells Translational Medicine,4 (5) : 459–467.

Csaki C, U. Matis, A. Mobasheri, H. Ye, and M. Shakibaei. (2007). Chondrogenesis, Osteogenesis and Adipogenesis of Caninemesenchymal Stem Cells: a Biochemical, Morphological Andultra Structural Study,†Histochemistry and Cell Biology,128 (6) : 507–520.

Dominici M , K. Le Blanc, I. Mueller et al., (2006). Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement,Cytotherapy8 (4) : 315–317.

Ehrhart J, D. Darlington, N. Kuzmin-Nichols et al. (2016). Biodistribution of Infused Human Umbilical Cord Blood Cells in Alzheimer’s Disease-like Murine Model,Cell Transplantation, 25 (1) : 195–199.

Escolar ML, M. D. Poe, J. M. Provenzale et al. (2015). Transplantation of Umbilical-cord Blood in Babies with Infantile Krabbe’s Disease,The New England Journal of Medicine,352 (20) 2069–2081.

Fan YP, C. Hsia, K. Tseng et al. (2016).The Therapeutic Potentialof Human Umbilical Mesenchymal Stem Cells from Wharton’s Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis,†Stem Cells Translational Medicine,5 (2) : 235–247.

Fernandes, S J. J. H. Chong, S. L. Paige et al.. (2015). Comparison of Human Embryonic Stem Cell-derived Cardiomyocytes, Cardiovascularprogenitors, and Bone Marrow Mononuclear Cells Forcardiac Repair,StemCell Reports,5(5) : 753–762.

Garzon,I, B. Perez-Kohler, J. Garrido-Gomez et al. (2012). Evaluationof the Cell Viability of Humanwharton’s Jelly Stem Cells for Use in Cell Therapy,Tissue Engineering Part C: Methods,18 (6) : 408–419.

Greggio,C. F. De Franceschi, Figueiredo-Larsen et al. (2013). Artificial Three-dimensional Niches Deconstruct Pancreas Development In Vitro,†Development, 140 (21) : 4452–4462.

Ha CW,Y.-B.Park,J.-Y.Chung,andY.-G.Park, (2015)Cartilage Repair using Composites of Human Umbilical Cord Blood-derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model,†Stem Cells Translational Medicine,4 (9) : 1044–1051.

Hu, X. Yu, Z. Wang et al., (2013). Long Term Effects of the Implantationof Wharton’s Jelly-Derived Mesenchymal Stem Cells fromthe Umbilical Cord for Newly-onset Type 1 Diabetes Mellitus, Endocrine Journal,60 (3) : 347–357.

Jurga M, A. W. Lipkowski, B. Lukomska et al., (2009). Generation of Functional Neural Artificial Tissue from Human Umbilical Cord Blood Stem Cells,†Tissue Engineering Part C: Methods,15 (3) : 365–372.

Leferink,AM, Y.C.Chng,C.A.van Blitterswijk, and L Moroni. (2015). Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3dadditive Manufactured Scaffolds,†Frontiers in Bioengineering and Biotechnology, 3,article169.

Levit, RD, N. Landazuri,E.A.Phelpsetal.,. (2012 )Cellular Encapsulation Enhances Cardiac Repair,†Journal of the American HeartAssociation,2 (5),Article IDe000367.

Liu X, P. Zheng, X. Wang et al. (2014), a Preliminary Evaluation of Efficacy and Safety of Wharton’s Jelly Mesenchymal Stem Cell Transplantation in Patients with Type2 Diabetes Mellitus,StemCell Research & Therapy,5 (2).

Llames S, Perez EG, Meana I, Larcher F and del Rıo M. Tissue Engineering21:40,pp 345-353.

Mason, C and P. Dunnill, (2008). A Brief Definition of Regenerative Medicine. Regenerative Medicine, 3(1) : 1–5.

Mead,B., M.Berry,A.Logan,R.A.H.Scott,W .Leadbeaterand, B.A. Scheven. (2015).Stem Cell Treatment of Degenerative Eye Disease,Stem Cell Research,14 (3) : 243–257.

Nagata,H. M. Ii, E. Kohbayashi, M. Hoshiga, T. Hanafusa, and M. Asahi. (2016). Cardiac Adipose-derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells In c57bl/6 Mice,†Stem Cells Translational Medicine,5 (2) : 141– 151.

Oshima M and T. Tsuji, (2015)Whole Tooth Regeneration as a Future Dental Treatment,†Advances in Experimental Medicine and Biology,881 : 255–269.

Park, BS, W. S. Kim, J. S. Choi et al. (2010)Hair Growth Stimulated by Conditioned Medium of Adipose-derived Stem Cells is Enhanced by Hypoxia: Evidence of Increased Growth Factor Secretion.Biomedical Research,31(1) : 27–34.

Park, GY, D. R. Kwon, and S. C. Lee, (2015). Regeneration of Full-thickness Rotator Cuff Tendon Tear after Ultrasound-guided Injection with Umbilical Cord Blood-derived Mesenchymal Stem Cells in a Rabbit Model,Stem Cells Translational Medicine,4 (11) : 1344–1351.

Pawitan, JA. (2014). Prospect of Stem Cell Conditioned Medium in Regenerative Medicine. Biomed Reseacrh International,1-15.

Potdar PD and Y. D. Jethmalani, (2015). Human Dental Pulp Stem Cells: Applications in Future Regenerative Medicine,World Journal of Stem Cells,7 (5) 839–851.

Ribitsch I, J. Burk, U. Delling et al., (2010). Basic Science and Clinical Application of Stem Cells in Veterinary Medicine, Advances in Biochemical Engineering/Biotechnology,123 : 219–263.

Salguero-Aranda,C. R. Tapia-Limonchi, and G. M. Cahuana. (2016).Differentiation of Mouse Embryonic Stem Cells towards Functional Pancreatic Beta-cell Surrogates through Epigenetic Regulation of Pdx1 by Nitric Oxide,Cell Transplantation.

Sen B, Z. Xie, G. Uzer et al., (2015).Intranuclear Actin Regulates Osteogenesis, Stemcells,33 (10) : 3065–3076.

Sharma AK, M. I. Bury, A. J. Marks et al. (2011). a Non Human Primate Model for Urinary Bladder Regeneration using Autologous Sources of Bone Marrow-derived Mesenchymal Stem Cells,†STEM CELLS,29 (2) : 241–250.

Shiba,Y. S. Fernandes, W.-Z. Zhu et al., (2012). Human ES-cell-derived Cardiomyocytes Electrically Couple and Suppress Arrhythmias Ininjured Hearts,Nature,489 (7415) : 322–325.

Shroff, G and R. Gupta. (2015). Human Embryonic Stem Cells in the Treatment of Patients with Spinal Cord Injury,Annals of Neurosciences,22(4) : 208–216.

Tolosa, J. Caron, Z. Hannoun et al. (2015). Transplantation of Hesc-derived Hepatocytes Protects Mice from Liver Injury,Stem Cell Research & Therapy,6,article246.

Ulloa-Montoya, F., Verfailie, C.M., dan Hu, W-S. (2005).Culture Systems for Pluripotent Stem Cells. Journal of Bioscience and Bioengineering 100 (1): 12-27.

Vedantham, (2015). Newapproaches to Biological Pacemakers: Links to Sinoatrial Node Development,Trends in Molecular Medicine, 21 (12) : 749–761.

Wagner JE Jr., C. G. Brunstein, A. E. Boitano et al. (2016). Phasei/Ii Trial of Stemregenin-1 Expanded Umbilical Cord Bloodhematopoietic Stemcells Supports Testing as a Stand-alone Graft,Cell Stem Cell,18 (1) : 144–155.

Wolfrum K.,Y.Wang,A.Prigione,K. Sperling, H. Lehrach, and J. Adjaye. (2010). The Large Principle of Cellular Reprogramming: Lost, Acquired and Retained Gene Expression in Foreskin and Amniotic Fluid-derived Human Ips Cells, PLoS ONE,5 (10), Article ID e13703.

Ye, L. M. A. Robertson, T. L. Mastracci, and R. M. Anderson. (2016).an Insulin Signaling Feedback Loop Regulates Pancreas Progenitor Cell Differentiation during Islet Development and Regeneration, Developmental Biology,409 (2) : 354–369.

Zhou BR,Y.Xu,S.L.Guoetal. (2013).Effect of Conditioned Media of Adipose-derived Stem Cells on Wound Healing after Ablative Fractional Carbon Dioxide Laser Resurfacing. BioMed Research International.


  • Saat ini tidak ada refbacks.