USULAN PENERAPAN SIX SIGMA UNTUK MENGURANGI CACAT PADA PRODUK HEX BOLT M12 X 28 mm DI PT. JAYA METAL GEMILANG

Iphov Kumala Sriwana¹, Djadja Nurdjaman² Jurusan Teknik Industri Fakultas Teknik Universitas Indonusa Esa Unggul Jln. Arjuna Utara No 9 Kebon Jeruk Jakarta iphov.kumala@esaunggul.ac.id

Abstrak

PT. Jaya Metal Gemilang merupakan sebuah perusahan pembuat baut yang digunakan untuk furniture, elektronik, sepeda, kontruksi bangunan, sepeda motor serta baut komponen otomotif dan non otomotif. Di dalam perusahaan terjadi permasalahan pada proses produksi yaitu buruknya kualitas produk yang dihasilkan oleh mesin dan perlu dicari penyebab potensial permasalahannya dan menentukan solusi apa yang harus dilakukan berdasarkan permasalahan-permasalahan yang menjadi prioritas dengan menggunakan metode Six Sigma. Dari observasi yang dilakukan pada bulan April 2010 - Juli 2010 diketahui jumlah cacat terbesar adalah Hex Bolt M12x28 mm (lihat tabel 1) yaitu sebesar 1.301 pcs dari total produksi 540.602 pcs (0,24%). Dan dari jenis cacat yang terbesar yang sering muncul pada produk tersebut adalah cacat ulir. Setelah dilakukan perhitungan index kemampuan kapabilitas proses pada perusahaan tersebut, didapat Cpk = 0,68, DPMO = 802 ppm dan nilai sigma = 4,66 sigma, nilai tersebut masih kurang mendekati tingkat mutu kelas dunia yang menginginkan pencapaian level kualitas. Dengan Fishbone Diagram didapat 10 faktor terbesar penyebab potensi kegagalan Cacat Ulir, yang kemudian ditanggulangi dengan beberapa kontrol pencegahan, deteksi dan usulan perbaikan sesuai dengan metode Six Sigma yaitu FMEA. Usulan yang diterapkan untuk menaikan nilai sigma perusahaan adalah Kasie Lab. melakukan pemeriksaan hasil cek laboratorium mengenai spesifikasi dies yang diisi lembaga independent, menghitung Life time untuk dies dan oli dan di tetapkan sebagai standard untuk penggantian selanjutnya, mengganti baut pengunci dies dan baut setingan pressure dies dengan yang lebih kuat, Kasie Rolling melakukan pemeriksaan hasil check sheet persiapan mass production, penggunaan sensor deteksi fungsi baut pengunci, baut setingan pressure dies dan pendorong bahan serta Kasie Maintenance melakukan pemeriksaan hasil check oli harian, melakukan pengecekan kekerasan material sebelum proses produksi, penambahan operator QA-IP, melakukan pengecekan diameter ulir dengan 6 (enam) posisi pengecekan, memberikan pelatihan kepada operator baru dan penambahan jumlah exhaust yang proposional dengan luas area produksi.

Kata Kunci: Six Sigma, Fishbone Diagram, FMEA, Pressure Dies, Mass Production

Pendahuluan

Era perdagangan bebas sudah dimulai. Babak baru dunia perindustrian kian menghadapi tantangan yang semakin ketat dalam dunia perdagangan akan berlangsung. Era ini memiliki sejumlah karakteristik antara lain : kinerja perusahaan harus mampu memenuhi harapan pihak terkait, adanya tuntutan agar perusahaan selalu menyempurnakan kinerjanya, ketatnya persaingan antar produk sejenis dan diantara produk tertentu dengan substitusinya, menguatnya ketergantungan antara satu perusahaan dengan lainnya dan cepatnya perubahan selera pelanggan. Tantangan ini harus ditindak lanjuti oleh setiap perusahaan apabila ingin tetap eksis.

Menghadapi kondisi seperti tersebut diatas, perusahaan telah berupaya menyesuaikan diri sedemikian rupa demi mempertahankan keberadaannya. PT.Jaya Metal Gemilang adalah suatu perusahaan yang memproduksi baut. Proses produksinya bersifat Massal Production sehingga kecenderungan produk mengalami penyimpangan standard sangatlah besar.. Adapun permasalahan yang terjadi pada perusahaan tersebut adalah buruknya kualitas produk Hex Bolt M12x28mm khususnya pada mesin *rolling*. Dengan tujuan untuk menurunkan tingkat kecacatan yang selama ini sering terjadi. Kecacatan yang muncul perlu dicari penyebab potensial permasalahannya menentukan solusi apa yang harus dilakukan. perangkat manajerial Adapun mengendalikannya disebut SixSigma yang merupakan sebuah metode manajemen yang diperkenalkan oleh Motorola, kemudian dilanjutkan dan dikembangkan oleh GE, Allied Signal dan Texas Instrument (Ingle & Roe, 2001).

Six Sigma merupakan pendekatan menyeluruh untuk menyelesaikan masalah dan peningkatan proses melalui fase DMAIC (Define, Measure, Analyze, Improve, Control). Elemen

penting dalam *Six Sigma* yaitu memproduksi hanya 3.4 cacat untuk setiap satu juta kesempatan atau operasi — 3.4 DPMO (*Defect Per Million Opportunities*).

Penelitian ini diupayakan untuk dapat mengidentifikasikan dan menganalisa permasalan yang timbul, memberikan usulan penerapan metodologi Six Sigma pada proses produksi *Hex Bolt* M12x28 mm khususnya pada proses *rolling*, dan memberikan usulan berdasarkan hasil penelitian kepada perusahaan agar dapat meningkatkan kualitas produk dan keuntungan perusahaan.

Metode Penelitian

Tahapan-tahapan yang digunakan dalam peneltian ini pada dasarnya adalah metodologi DMAIC *Six sigma* dengan beberapa penjelasan rinci sebagai berikut: uraian kerangka penelitian dimulai dari penelitian lapangan, studi pustaka, dan tujuan penelitian; pengumpulan data penelitian; dan mekanistik metodologi *Six Sigma* dengan berbagai *tools* yang tersedia. Perancangan penerapan dengan metode FMEA digunakan pada tahapan *improve*.

Hasil dan Pembahasan

Pengolahan data yang dilakukan mengikuti tahapan Define – Measure – Analyze – Improve –

Control (DMAIC), yang merupakan singkatan dari Define (merumuskan), Measure (mengukur), Analyze (menganalisa), Improve (meningkatkan / memperbaiki), dan Control (mengendalikan) yang menghubungkan bermacam-macam perangkat statistik serta pendekatan perbaikan proses lainnya. Siklus DMAIC akan dilakukan secara berkelanjutan walaupun telah sampai pada proses kontrol yang merupakan fase terakhir.

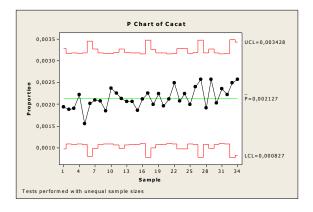
Tahap Define

Pada tahap *Define* merupakan tahap yang pertama dalam program peningkatan kualitas *Six Sigma*, menentukan masalah, menetapkan persyaratan pelanggan dan membangun tim. Aktivitas utama adalam tahap *define* adalah mendefinisikan suatu masalah untuk suatu proyek *Six Sigma*. Metode yang digunakan peta alir (*Flow Chart*), diagram SIPOC, Tabel pernyataan masalah (metode 5W+1H) serta *pareto* diagram.

Data yang digunakan untuk proses *define* dan pengolahan data ini diperoleh dari data produksi pada bulan April 2010 sampai dengan Juni 2010 yang terlampir pada tabel 1 di bawah ini:

Tabel 1 Data Cacat Produksi bulan April ~ Juni 2010 Setelah Diurutkan

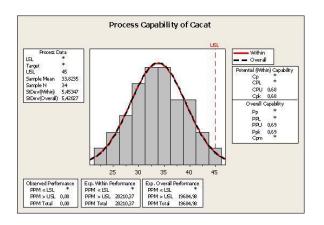
	Duta Cacat I I Gadkoi											
No	Nama Produk	Jumlah	J	enis Cacat		Total						
110		Produksi	Kepala	Body	Ulir	Cacat	Cacat					
1	Hex Bolt M12x28 mm	540.602	114	37	1.150	1.301	0,24%					
2	Hex Bolt M12x33 mm	448.138	72	47	672	791	0,18%					
3	Bolt Weld Ø7,88x9 mm	31.500	43	0	0	43	0,14%					
4	Socket Bolt M6x10 mm	304.096	276	6	6	288	0,09%					
5	Collar 1450B Ø10x12.5 mm	319.166	277	20	0	297	0,09%					
6	Socket Bolt M6x15 mm	902.578	671	13	25	709	0,08%					
7	Screw Mirror M4x13 mm	443.972	35	66	231	332	0,07%					
8	Rivet Joint Ø13x15 mm	53.390	0	39	0	39	0,07%					
9	Baut JCBC M8x30 mm	56.005	13	0	27	40	0,07%					
10	Flange Bolt M6x12 mm	445.902	244	8	6	258	0,06%					
11	Baut Cakram M8x16 mm	134.710	47	0	27	74	0,05%					
12	MS-JMT-O M6x16 mm	71.387	35	0	4	39	0,05%					
13	Rivet /R Ø5x12 mm	222.646	71	50	0	121	0,05%					
14	Rivet /R Ø6x12 mm	229.431	67	57	0	124	0,05%					
15	Pen Caster Ø7.85x50 mm	307.442	46	75	0	121	0,04%					
16	Duplo Hex M10x32 mm	76.107	19	0	10	29	0,04%					
17	Pin W/ Hole Ø8x40 mm	403.330	71	62	0	133	0,03%					
18	Pen Caster Ø7.85x34.4 mm	311.763	62	37	0	99	0,03%					
19	Baut Cakram M8x25 mm	115.200	3	0	32	35	0,03%					
20	Hex Bolt M6x49 mm	385.870	43	65	9	117	0,03%					
21	Screw Flat M8x30 mm	411.023	110	1	12	123	0,03%					
22	Baut Cakram M8x20 mm	121.400	9	0	23	32	0,03%					
23	JCBC M6x12 mm	383.635	90	0	10	100	0,03%					
24	Baut Carten M12x25 mm	131.051	23	0	11	34	0,03%					
25	Screw BT M3x14 mm	3.038.941	498	0	290	788	0,03%					
26	Pin Handle Ø6x29 mm	158.675	0	41	0	41	0,03%					
27	Pin D38A Ø8x61 mm	402.683	89	15	0	104	0,03%					
28	Screw Tapping #6x22 mm	612.987	23	6	121	150	0,02%					
29	Stud Bolt 5/16x31 mm	461.700	0	47	60	107	0,02%					
30	Gagang Spion M10x140 mm	453.202	36	25	41	102	0,02%					


Dari data di tabel 1, didapatkan bahwa produk yang mempunyai presentase cacat terbesar adalah Hex Bolt M12 x 28 mm dengan presentase 0,24 % dari total jumlah produksi dan dapat dilihat jumlah cacat produk Hex Bolt M12x28 mm dari presentase terbesar sampai dengan jumlah presentase terkecil adalah cacat ulir 1.150 pcs (88,4%), cacat kepala 114 pcs (8,8%) dan cacat body 37 pcs (2,8%). Dari tabel tersebut dapat disimpulkan bahwa jenis cacat yang menyumbang jumlah cacat terbesar adalah jenis cacat ulir dengan presentase 88.4%. Masalah tersebut harus mendapat prioritas penyelesaian terlebih dahulu. Maka objek observasi yang akan dianalisa dalam pembahasan ini adalah produk Hex Bolt M12x28 mm dengan jenis cacat ulir, hal ini disesuaikan dengan ranking masalah yang muncul pada bulan April 2010 ~ Juni 2010 (Lihat Tabel 1).

Tahap Measure

Measure merupakan langkah operasional kedua dalam program peningkatan kualitas Six Sigma. Pada tahap measure, dilakukan pendefinisian terhadap karakteristik kualitas (CTQ) kunci, pengukuran untuk melihat kestabilan dan kemampuan proses, dan mengukur kinerja sekarang (baseline).

Fase ini berfokus pada bagaimana cara mengukur proses internal yang mempengaruhi CTQ menggunakan alat-alat SPC seperti worksheet, Pareto diagram, histogram, kapabilitas prosses untuk menghitung DPMO dan level sigma perusahaan saat ini.


Dalam perhitungan proporsi cacat, data yang digunakan adalah data jumlah cacat periode April s/d Juni 2010. Data yang dikumpulkan merupakan data jumlah cacat ulir untuk *atribut* dengan jumlah ukuran *sample* yang berbeda-beda setiap harinya. Adapun data cacat ulir *Hex Bolt* pada proses *rolling* yang diambil selama bulan April s/d Juni 2010 dapat dilihat pada Gambar 1.

Gambar 1 Diagram Peta Kendali Proporsi Cacat Ulir

Dari Gambar 1 di atas dapat disimpulkan bahwa semua data berada dalam batas kendali. Karena proses sudah berada dalam batas kontrol, maka tahap selanjutnya akan dihitung kemampuan proses perusahaan.

Pengukuran kestabilan proses dilakukan menggunakan kapabilitas proses yaitu dengan menggunakan program minitab.

Gambar 2 Kapabilitas Proses Mesin *Rolling-*7

Dari data gambar 2 di atas terlihat bahwa nilai Cpk 0,68 maka dapat dikatakan bahwa kapabilitas proses perusahaan tersebut belum baik (tidak *capable*) kurang dari 1.

Untuk mendapatkan nilai *sigma*, ada beberapa hal yang harus dilakukan perhitungan terlebih dahulu, yaitu :

• Defect Per Unit (DPU)

$$DPU = \sum cacat / \sum unit$$

$$= 1.301 / 540.602$$

$$= 0,002407$$

• Defect Per Opportunity (DPO)

$$DPO = \frac{\sum cacat}{\sum unitx \sum opportunit y}$$

$$= \frac{DPU}{JumlahPelu \ angCacat}$$

$$= 0,002407 / 3$$

$$= 0,000802$$

• Defect Per Million Opportunity (DPMO) DPMO = DPO x 1.000.000 = 0,000802 x 1.000.000 = 802 ppm

DPMO dapat di konversikan menjadi kapabilitas sigma dilakukan dengan menggunakan microsoft excel, seperti dibawah ini:

= normsinv ((1000000-DPMO)/1000000)+ 1.5 = normsinv ((1000000-802)/1000000)+1.5

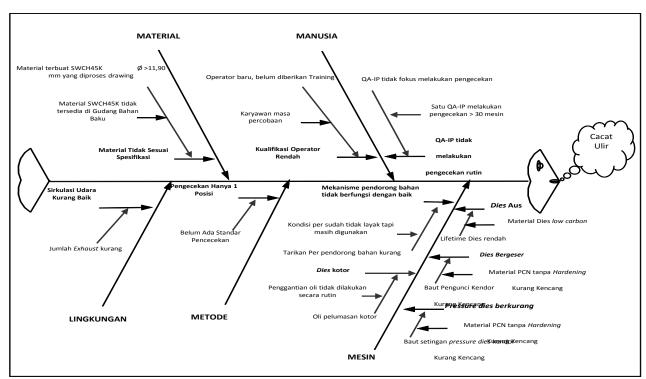
=4,66 sigma

Jadi, dari hasil perhitungan index kemampuan kapabilitas proses diatas dengan melihat Cpk = 0,68, DPMO = 802 ppm dan nilai sigma = 4,66 sigma, nilai tersebut masih kurang mendekati tingkat mutu kelas dunia yang menginginkan pencapaian *level* kualitas 6σ .

Tahap Analyze

Tahap *analyze* merupakan tahap ketiga dalam proyek peningkatan kualitas Six Sigma. Aktivitas dalam tahap *analyze* adalah mengetahui faktorfaktor yang paling berpengaruh terhadap *Critical of Quality* (CTQ) dengan *Cause and Effect diagram* (*Fishbone Diagram*) dan FMEA.

Tahap awal identifikasi masalah dilakukan dengan cara brainstorming yang bertujuan untuk mengetahui masalah dan akar masalah yang terjadi terhadap cacat ulir. Dari brainstorming tersebut Fishbone diagram dipilih untuk memudahkan proses analisa dan perbaikan. Ada beberapa masalah dan akar masalah yang teridentifikasi dengan fishbone diagram yang nantinya akan dilakukan proses analisa.


Seperti yang diuraikan dalam *brainstorming* beberapa penyebab dan akar masalah dimaksudkan untuk mengetahui seberapa banyak masalah yang muncul dalam proses pembuatan *hex bolt* pada proses *rolling*. Berikut ini *fishbone diagram* masalah cacat ulir (gambar 3):

Tahap Improve

Tahap *Improve* merupakan tahap keempat dalam metodologi DMAIC, Setelah sumber dan akar penyebab dari masalah kualitas teidentifikasikan, maka perlu dilakukan penetapan rencana tindakan untuk melaksanakan peningkatan kualitas *Six Sigma*. Beberapa point penting dalam analisa penyebab dan pemecahan masalah nantinya diharapkan dapat mereduksi semaksimal mungkin adanya cacat bahkan mencapai nol. Kompleksitas masalah yang ada baik dalam sistem maupun proses harus dapat ditanggulangi guna mencapai output yang maksimal.

Pengumpulan data secara terperinci akan memudahkan dalam proses analisa. Hal ini sangat menentukan untuk tahapan selanjutnya yaitu pemecahan masalah. Seperti yang telah diuraikan diatas timbulnya masalah cacat ulir disebabkan oleh banyak faktor. Faktor tersebut dianalisa dengan fishbone diagram untuk mengetahui faktor penyebabnya untuk kemudian ditentukan tahap penanggulangannya.

FMEA akan digunakan untuk identifikasi penyimpangan-penyimpangan potensial yang mungkin dari setiap spesifikasi dan meminimumkan penyimpangan-penyimpangan itu melalaui deteksi dan pencegahan perubahan-perubahan dalam variabel proses. Pembuatan FMEA berdasarkan pada pembahasan dan wawancara dengan pihak terkait. Process FMEA penanggulangan masalah Hex Bolt M12x28mm dijelaskan seperti pada tabel 2.

Gambar 3
Fishbone Diagram Hex Bolt M12 x 28 mm Masalah Cacat Ulir

Tabel 2 FMEA Penanggulangan Masalah Cacat Ulir

PT.JAYA METAL GEMILANG BOLT, NUT & METAL COMPONENT

FAILURE MODE AND EFFECTS ANALYSIS (PROCESS FMEA)

Item Customer Model Years (s)/Vehicle Core team	(s)	: Hex Bolt M12 x 28 n : PT. Prima Putra P. : 2010 / Truck Hino : Ismat, Faisal Rahma		Process Responsibility Key Date Dede Junaedi, Suherdi, Supri		Seksi Roling 07.16.2010 jadja Nurdjaman		-		FMEA Number Page Prepared By FMEA Date (Ori)	: 001/10/PFME : 01/04 : Djadja Nurd : 07.21.2010		В М	12x28	<u>m</u> m	_	
Process Function	Potential Failure	Potential Effect (s)	s	PotentialCause (s)/	0	Current Pr	Current Process Controls			Recommended	Responsibility & Target	Action Results					
Requirements	Mode	of Failure	v	Mechanism (s) of Failure	u	Prevention	Detection	e c	P. N.	Action(s)	Completion Date	Action	S e v	O E c c	P.		
Life time dies renduh	Dies aus	Diameter ulir dibawah standard	8	Material dies low carbon	5	Cek spesifikasi material dies pre kedatangan menggunakan Spectro Meter	Membuat standard life time dies agar mencegah dies yang sudah aus digunakan untuk proses produksi	4		Pemeriksaan hasi cek laboratorium yang disi lembaga independent oleh Kasie Lab. dan menghitung berapa max pes baut yang dihasilkan untuk dilakukan untuk dilakukan untuk dilakukan untuk dilakukan untuk dilakukan untuk dilakukan untuk penggantian dietapkan untuk penggantian dies selanjutnya							
Baut pengunci dies kendor	Dies bergeser	- Diameter ulir dibawah standard - Ulir miring	8	Material baut pengunci dies terbuat dari PCN tanpa Hardening	5	- Gami baut pengunci dies dengan yang lebih kuat dan memiliki umur pakai yang panjang - Perirksa baut pengunci dies setiap starr produksi	Penggunaan sensor deteksi fungsi baut pengunci dies, sehingga ketika baut pengunci ketodor lampu alarm akan menyala	4	160	Menggunakan baut pengunci yang lebih kuat dan memiliki umur pakui yang panjang sehingga tidak cepat aus atau kendor, pemeriksaan check sheet persiapan mass production yang diisi oleh teknisi oleh Kasie. Rolling dan menastikan sensor alarm dengan cara dicoba							

PT.JAYA METAL GEMILANG
BOLT, NUT & METAL COMPONENT

FAILURE MODE AND EFFECTS ANALYSIS (PROCESS FMEA)

Item Customer Model Years (s)/Vehicle Core team	: (s)	: Hex Bolt M12 x 28 m : PT. Prima Putra P. : 2010 / Truck Hino : Ismat, Faisal Rahma		Process Responsibility Key Date Dede Junaedi, Suherdi, Supri	:	Seksi Roling 07.16.2010 jadja Nurdjaman				FMEA Number Page Prepared By FMEA Date (Ori)	: 001/10/PFMI : 02/04 : Djadja Nurd : 07.21.2010		B N	112x	28 1	<u>m</u> m - -	
Process Function	1		s	PotentialCause (s)/	Responsibility	Action Results											
Requirements	Potential Failure Mode	Potential Effect (s) of Failure	e	Mechanism (s) of Failure	u r	Prevention	Detection	t e c	P. N.	Action(s)	& Target Completion Date	Action	S e v	O c c	e	1	R. P. N.
Baut setingan pressure dies kendor	Presure dies berkurang	- Diameter ulir dibawah <i>standard</i>	8	Material baut setingan pressure dies turbuat dari PCN tanpa Hardening	5	- Ganti baut setingan pressure dies dengan yang lebih kuat dan memiliki umur pakai - Periksa baut setingan pressure dies setiap start produksi oleh teknisi	Penggunaan sensor deteksi fungsi baut setingan pressure dies, sehingga ketika baut setingan pressure dies kendor lampu alarm akan menyala	4	160	Menggunakan baut setingan pressure dies yang lebih kuat dan memiliki umur pakai yang panjang sehingga tidak cepat aus atau kendor, pemeriksaan check sheet persiapan mass production yang diisi oleh teknisi oleh Kasie. Rolling dan memastikan sensor alarm dengan cara dicoba							
Oli Kotor	Dies kotor	Ulir crack	8	Penggantian oli tidak dilakukan secara rutin.	5	Cek oli setiap hari secara rutin	Membuat standard untuk penggantian oli	4	160	Pemeriksaan oli yang diisi operator oleh Kasie Maintenance dan menghitung berapa jam mesin beroperasi untuk dilakukan penggantian oli dan di tetapkan sebagai standard untuk penggantian oli selanjutnya							

PT.JAYA METAL GEMILANG BOLT, NUT & METAL COMPONENT

FAILURE MODE AND EFFECTS ANALYSIS (PROCESS FMEA)

Item Customer Model Years (s)/Vehicle Core team	(s)	: Hex Bolt M12 x 28 m : PT. Prima Putra P. : 2010 / Truck Hino : Ismat, Faisal Rahma		Process Responsibility Key Date Dede Junaedi, Suherdi, Supri	; ; , D	Seksi Roling 07,16,2010 jadja Nurdjaman				FMEA Number Page Prepared By FMEA Date (Ori)	: 001/10/PFME : 03/04 : Djadja Nurdj : 07.21.2010		.в м	112x2	28 m	m			
Process Function			e	PotentialCause (s)/	0	Current Process Controls		D e	R.		Responsibility	Action Results							
Requirements	Potential Failure Mode	Potential Effect (s) of Failure	e v	Mechanism (s) of Failure	u r	Prevention	Detection	t e c	P. N.	Action(s)	& Target Completion Date	Action	Ser	0 0	D e t	R. P. N.			
Kondisi per sudah tidak layak tapi masih digunakan	Tarikan Per pendorong bahan kurang	- Ulir miring - Profil ulir tidak terbentuk	8	Mekanisme pendorong bahan tidak berfungsi dengan baik karena <i>lifetime</i> per sudah habis	4	- Periksa kondisi per sebelum dan saat proses produksi	Penggunaan sensor deteksi fungsi pendorong bahan, sehingga ketika dies bergerak dan pendorong tidak menyentuh sensor lampu alarm akan menyala	4	128	Kasie Rolling memastikan pemeriksaan kondisi per dilakukan oleh teknisi dan memastikan sensor alarm dengan cara dicoba									
Material baut tidak sesuai dengan spesifikasi	Diameter sebelum rolling keras	Diameter ulir dibawah standard		Material terbuat dari diameter > 11.90 yang diproses drawing	3	Cek kekerasan bahan sebelum proses produksi	Membuat standard kekerasan material sebelum proses produksi	4	96	Membuat standard kekerasan material sebelum proses produksi									
QA-IP tidak melakukan pengecekan rutin	Sebagian proses rolling tidak melalui proses pengecekan secara intensif	Hasil produksi yang cacat tidak di ketahui	7	Satu operator QA-IP melakukan pengecekan > 30 mesin	4	Menghitung kembali jumlah ideal operator QA- IP sesuai jumlah mesin	Penambahan operator QA-IP .	3	84	Menghitung kembali jumlah ideal operator QA- IP sesuai jumlah mesin untuk menjadi dasar penambahan operator QA-IP.									
Pengecekan diameter ulir hanya I (satu) posisi	Hasil pengukuran diameter ulir tidak akurat	Hasil produksi yang cacat tidak di ketahui		Belum Ada Standar Pencecekan	4	Melakukan pengecekan diameter ulir dengan 6 (enam) posisi pengecekan	Penambahan poin pengecekan diameter ulir menjadi 6 (enam) posisi pada check sheet inprocess	3	84	Melakukan pengecekan diameter ulir dengan 6 (enam) posisi pengecekan sesuai check sheet inprocess yang telah diperbaiki									
Kualifikasi <i>operator</i> rendah	Operator kurang mengerti prosedur	Sering terjadi kesalahan kerja		Operator baru belum di- training	3	Memberikan training terlebih dahulu sebelum sebelum operator menjalankan mesin	Melakukan tes kepada karyawan baru sebelum menjalankan mesin	3	45	Memberikan pelatihan kepada operator baru yang masih dalam masa percobaan, agar tidak terjadi kesalahan kerja.									

PT.JAYA METAL GEMILANG BOLT, NUT & METAL COMPONENT

FAILURE MODE AND EFFECTS ANALYSIS (PROCESS FMEA)

Item Customer Model Years (s)/Vehicle Core team		: Hex Bolt M12 x 28 m : PT. Prima Putra P. : 2010 / Truck Hino : Ismat, Faisal Rahma		Process Responsibility Key Date Dede Junaedi, Suherdi, Supri	:	Seksi Roling 07.16.2010 jadja Nurdjaman				FMEA Number Page Prepared By FMEA Date (Ori)	: 001/10/PFME : 04/04 : Djadja Nurdj : 07.21.2010		B M	112x	28 n	ım		
Process Function			c	PotentialCause (s)/	O Current Process Controls						Responsibility	Action Results						
Requirements	Potential Failure Mode	Potential Effect (s) of Failure	e v	Mechanism (s) of Failure	c u r	Prevention	Detection	t e c	R. P. N.	Recommended Action(s)	& Target Completion Date	Action	S e v	O c c	D e t	R. P. N.		
Sirkulasi udara kurang	Operator tidak fokus	Sering terjadi cacat	3	Kekurangan jumlah exhaust	2	Menghitung kembali	Penambahan jumlah exhaust	3	18	Penambahan								
baik	terhadap pekerjaannya	produk		1	ı	jumlah ideal exhaust	sesuai dengan jumlah			jumlah exhaust								
	karena kepanasan			1	ı	sesuai luas ruangan agar	idealnya			yang proporsional					1			
				1	ı	operator nyaman dalam				dengan luas area					1			
						melakukan pekerjaannya				produksi								

Usulan yang dapat diberikan untuk meningkatkan kualitas produk *Hex Bolt* M12 x 28 mm pada proses *rolling* berdasarkan hasil FMEA diatas dapat dilihat pada tabel 3 di bawah ini :

Tabel 3
Tabel Usulan Perbaikan Sesuai dengan FMEA

Potensi	Usulan Perbaikan								
Kegagalan	Kasie Lab. melakukan pemeriksaan hasil								
Life time dies rendah	cek laboratorium mengenai spesifikasi <i>dies</i> yang diisi lembaga independent. Menghitung <i>Life time dies</i> dan ditetapkan sebagai <i>standard</i> untuk penggantian <i>dies</i> . Mengganti baut pengunci dengan yang lebih kuat dan memiliki umur pakai yang panjang								
Baut pengunci dies kendor	Kasie Rolling melakukan pemeriksaan hasil check sheet persiapan mass production yang diisi teknisi Penggunaan sensor deteksi fungsi baut pengunci dies Mengganti baut setingan pressure dies dengan yang lebih kuat dan memiliki umur								
Baut setingan pressure dies kendor	pakai yang panjang Kasie Rolling melakukan pemeriksaan hasil check sheet persiapan mass production yang diisi teknisi Penggunaan sensor deteksi fungsi baut setingan pressure dies Kasie Maintenance melakukan pemeriksaan hasil check oli harian yang								
Oli kotor	diisi operator Menghitung <i>Life time</i> oli dan di tetapkan sebagai <i>standard</i> untuk penggantian oli.								
Kondisi per sudah tidak layak tapi	Kasie <i>Rolling</i> memastikan pemeriksaan kondisi per dilakukan oleh teknisi Penggunaan sensor deteksi fungsi								
masih digunakan	pendorong bahan								
Material baut tidak sesuai	Membuat <i>standard</i> kekerasan material sebelum proses produksi								
dengan spesifikasi	Melakukan pengecekan kekerasan material sebelum proses produksi								
QA-IP tidak melakukan pengecekan rutin	Melakukan penambahan <i>operator</i> QA-IP sampai jumlah ideal sesuai jumlah mesin								
Pengecekan diameter ulir hanya 1 (satu) posisi	Melakukan penambahan poin pengecekan diameter ulir menjadi 6 (enam) posisi pada <i>check sheet inprocess</i> Melakukan pengecekan diameter ulir sesuai <i>check sheet inprocess</i> yang telah diperbaiki.								
Kualifikasi operator rendah	Memberikan pelatihan kepada <i>operator</i> baru yang masih dalam masa percobaan.								
Sirkulasi udara kurang baik	Melakukan penambahan jumlah <i>exhaust</i> yang proporsional dengan luas area produksi.								

Kesimpulan

Dari serangkaian pengumpulan data, analisa, tindakan penanggulangan dan usulan perbaikan, kesimpulan yang dapat diambil adalah :

- 1. Berdasarkan tabel 4.5. jumlah produksi bulan April 2010 sampai dengan Juni 2010, jumlah cacat terbesar adalah produk *Hex Bolt M12x28 mm* sebesar 0,24 %. Berdasarkan Gambar 4.20 Jenis cacat terbesar yang muncul pada produk *Hex Bolt M12x28 mm* adalah Cacat Ulir, dengan jumlah cacat sebesar 88,4 %.
- Besarnya Cpk, DPMO dan Nilai *Sigma* pada mesin *rolling-07* sebelum perbaikan adalah Cpk: 0,68, DPMO: 802 ppm dan Nilai Sigma: 4,66 sigma yang artinya kemampuan proses masih berada di luar batas atau masih kurang mendekati tingkat mutu kelas dunia yang menginginkan pencapaian *level* kualitas 6σ.
- 3. Dengan *Fishbone Diagram* didapat 10 faktor yang menjadi penyebab potensi kegagalan Ulir Cacat pada proses *rolling*, yaitu:
 - 1. Life time dies rendah
 - 2. Baut pengunci dies kendor
 - 3. Baut setingan *pressure dies* kendor
 - 4. Oli kotor
 - 5. Kondisi per sudah tidak layak tapi masih digunakan
 - 6. Material baut tidak sesuai dengan spesifikasi
 - 7. QA-IP tidak melakukan pengecekan rutin
 - 8. Pengecekan diameter ulir hanya 1 (satu) posisi
 - 9. Kualifikasi *operator* rendah

10. Sirkulasi udara kurang baik

Daftar Pustaka

- Brue, G. (2002). *Sig sigma for managers*. Mc Graw-Hill: A briefcase Book.
- Evans, J. R., & William, M. L. (2005). *Pengantar Six Sigma* [An Introduction to Six Sigma & Process Improvement]. Thomson.
- Gaspersz, V. (2006). Continous cost reduction through lean sigma aproach—strategi dramatis reduksi biaya dan pemborosan menggunakan pendekatan Lean Six Sigma. Jakarta: PT.Gramedia Pustaka Utama.
- Gaspersz, V. (2008). The executive guide to implementing Lean Six Sigma. Jakarta: PT Gramedia Pustaka Utama.
- Hendradi, C. T. (2006). *Statistik SIX SIGMA dengan Minitab*. Yogyakarta: CV.Andi Offset.
- Pande, P. S., Neuman, R. P., & Ronald, R. C. (2002). The Six Sigma way: Team fieldbook, an implementation guide for process improvement teams. McGraw-Hill.
- Sutalaksana., Iftikar, Z., dkk. (1979). *Teknik tata* cara kerja. Bandung: Institut Teknologi Bandung, Jurusan Teknik Industri.

http://www.isixsigma.com/